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Abstract

The results are presented of extensive numerical calculations, carried out using a highly accurate finite-volume method, for the

fully developed laminar flow of an inelastic shear-thinning power-law fluid through an eccentric annulus with inner cylinder rotation.

Additional calculations are reported for more complex rheological models, including Cross, Carreau and Herschel–Bulkley, which we

relate systematically to the power-law model. Comparisons are made with the results of other recent numerical studies. An extensive

bibliography is appended of 100 papers additional to those specifically referenced and concerned with theoretical and numerical

investigations of laminar flow of non-Newtonian fluids through annular channels. � 2002 Elsevier Science Inc. All rights reserved.
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1. Introduction

It has been estimated (Pearson, 1988) that some
106 m3 of drilling muds are used annually to drill 104 or
more oil and gas wells. During drilling operations these
liquid muds are pumped from a surface mud tank
through the drillpipe (several kilometres in length),
through nozzles in the rotating drillbit, and back to the
mud tank through the annular space between the well-
bore wall and the drill pipe. Drilling muds have several
functions: to support the wellbore wall and prevent its
collapse; to prevent ingress of formation fluids (gas and
liquid) into the wellbore; to transport rock cuttings to
the surface; to minimise settling of the cuttings if cir-
culation is interrupted; to clear the workface; to cool the
drillbit; and to lubricate the drill string. These require-
ments are related directly to both the cost effectiveness
of drilling operations and also their safety, for example

kick detection and control (blowout prevention). The
composition of a drilling mud is formulated to meet
these requirements which will differ from well to well. In
general, however, such colloidal systems are thixotropic,
shear-thinning liquids exhibiting apparent yield stress
and some degree of viscoelasticity.

Since the annual cost of the drilling operations out-
lined above runs into billions of dollars, it comes as no
surprise that the oil industry (i.e. the oil companies
themselves together with the oilfield-service companies)
has invested heavily in research into the flow of drilling
mud (‘‘mud hydraulics’’). Calculation of the flow down
the drillpipe is relatively straightforward whereas the
flow through the drillbit nozzles and in the region of the
workface is turbulent and extremely complex. From a
practical point of view interest focuses on the variation
in mud pressure within the wellbore and, to some
degree, the hydraulic torque (i.e. the torque exerted on
the rotating drillstring by the surrounding mud). The
underlying challenge to fluid dynamicists has been to
calculate the flowfield within the drillstring-wellbore
annulus, a situation usually idealised as that of steady,
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isothermal, fully developed laminar flow of a shear-
thinning liquid (modelled as a generalised Newtonian
fluid) through an annulus consisting of an outer cylin-
drical cylinder and an inner cylinder which may be offset
(i.e. eccentric) and rotating. In conventional drilling the
radius ratio of the annulus geometry is typically about
0.5 whereas in slimhole drilling and coiled-tube opera-
tions it exceeds 0.8. In reality the problem is complicated
by numerous factors: for example, the wellbore wall will
depart significantly from circularity, the eccentricity
varies with depth, the pressure and temperature increase
significantly with depth, drilling muds are to some de-
gree (depending upon the chemical composition) visco-
elastic and thixotropic and invariably contaminated
with drill cuttings and formation fluid (gas and liquid).
A complete analysis of the idealised problem is a pre-
requisite to a quantitative understanding of these more
complex situations.

Although the drilling of oil wells is the most impor-
tant, there are numerous other applications which re-
quire a detailed understanding of the annular flow of
non-Newtonian liquids. Such applications include oil
well-completion operations and are also found in in-
dustries dealing with industrial waste, with slurries and
suspensions such as processed foodstuffs, synthetic fibres
and even blood, and with the extrusion of molten plas-
tics and polymer solutions.

Even the idealised problem specified above is far from
trivial and it is only very recently that it has been pos-
sible to carry out calculations to predict all aspects of
the flowfield including the velocity distribution, fric-
tional pressure drop and torque exerted on the rotating
inner cylinder. The present status has been reached
gradually: within the references together with the bibli-
ography appended to this paper are 126 papers dealing
with progressively more complex aspects of the problem,

Nomenclature

DH hydraulic diameter, 2d (m)
e displacement of inner-cylinder axis from

outer-cylinder axis (m)
f Fanning friction factor, �d op

oz =ðqU 2Þ
K consistency index (Pa sn)
n power-law index
p pressure (Pa)
p non-dimensional pressure, pd=ðlxRIÞ
r radial distance from axis of inner cylinder (m)
r non-dimensional value of r, r=d
RI outer radius of inner cylinder (m)
RO inner radius of outer cylinder (m)
Re bulk axial Reynolds number, 2qUd=lF

Re0 Reynolds number for power-law fluid when
x ¼ 0

T rotational Reynolds number, qxRId=lF

Ta Taylor number, ðqx=lFÞ
2RId

3

Ta0 Taylor number for power-law fluid when
U ¼ 0

u axial component of velocity (m/s)
u non-dimensional value of u; u=U
U bulk axial velocity (m/s)
v tangential component of velocity (m/s)
v non-dimensional value of v, v=ðxRIÞ
w radial component of velocity (m/s)
w non-dimensional value of w, w=ðxRIÞ
y radial distance from outer wall of inner

cylinder (m)
y non-dimensional value of y, y=d
z axial distance (m)
c non-dimensional shear rate, _cc= _ccF
cF non-dimensional value of _ccF; _ccFd=U
_cc shear rate ðs�1Þ

_ccC characteristic shear rate for fluid ðs�1Þ
_ccF characteristic shear rate for flow ðs�1Þ
d mean annular gap width, RO � RI (m)
D percentage difference between fHB; fCR, etc.,

and fPL
e eccentricity, e=d
j radius ratio, RI=RO

k time constant (s)
l dynamic viscosity (Pa s)
l non-dimensional viscosity, l=lF

lF characteristic viscosity for flow (Pa s)
l0 viscosity for zero shear rate (Pa s)
l1 viscosity for infinite shear rate (Pa s)
n velocity ratio, xRI=U
q fluid density ðkg=m3Þ
s shear stress (Pa)
sS wall shear stress averaged over wetted surface

of annulus (Pa)
sY yield stress (Pa)
/ angular location with respect to inner cylinder
w stream function,

R RO

r v dr
w non-dimensional stream function,

w=
R RO

RI
v dr

x angular velocity of inner cylinder (rad/s)

Subscripts
CA Carreau model
CR Cross model
F flow
HB Herschel–Bulkley model
I inflexion point on log l versus log _cc curve
NN non-Newtonian
PL power-law model
SCA simplified Carreau model
SCR simplified Cross model
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initially using analytical techniques (both exact and
approximate), followed by numerical solutions to
physical approximations, and more recently, as here,
purely numerical procedures to solve the complete
idealised problem.

A cursory overview of all the work to date is provided
by the references plus the bibliography in which we list
all the published papers of which we are aware con-
cerned with theoretical and computational aspects of the
flow of generalised Newtonian fluids through annular
ducts. By far the most entries (70 papers) are for the
concentric annulus with bulk flow and no rotation of
either cylindrical surface. However, since rotation of the
drillpipe is inherent to the wellbore drilling application,
it is not surprising that numerous papers (22) are con-
cerned with the concentric annulus with bulk flow and
centrebody rotation (often referred to as helical or spiral
flow). Since a complication in the design of drilling
operations is that the drillpipe is invariably offset (i.e.
eccentric) to an unknown degree, another large group
(25) of papers is concerned with bulk flow through an
eccentric annulus with no rotation of either surface.
Only recently has the most general situation of bulk flow
through an eccentric annulus with inner cylinder rota-
tion received attention (10 papers) though the range of
parameters covered is very limited, hitherto there has
been no systematic investigation of the effects of these
parameters and their interactions and some of the con-
clusions are at best misleading, as we discuss in the
present paper. We have not included in the bibliography
the hundreds of papers concerned with the flow induced
in a concentric annulus in the absence of bulk flow and
the associated problem of Taylor instability. Nor have
we included papers primarily concerned with viscoelastic
fluids or papers concerned with flow in an eccentric
annulus in the absence of bulk flow.

The first paper to be published on the topic of non-
Newtonian liquid flow through an annulus is that of
Volarovich and Gutkin (1946) who gave an approximate
analytical solution for the axial flow of a Bingham fluid
in a concentric annulus. The first exact solution to this
problem was given by Laird (1957) whilst Fredrickson
and Bird (1958) considered both Bingham and power-
law fluids. Other generalised Newtonian fluids to be
investigated include Ellis (Bird, 1965), Meter and Bird
(Rotem, 1962; Kozicki et al., 1966), Rabinowitsch
(Rotem, 1962; Kozicki et al., 1966), Eyring (Nebrensk�yy
and Ulbrecht, 1968), Casson (Shul’man, 1970), Ree–
Eyring (Nebrensk�yy et al., 1970), Powell–Eyring (Russell
and Christiansen, 1974), Herschel–Bulkley (Hanks,
1979) and Robertson–Stiff (Fordham et al., 1991).
Starting with Rivlin (1956), many of these fluid models
have also been adopted for the investigation of flow
through a concentric annulus with rotation of the cen-
trebody. Rigbi and Galili (1971) added the Cross model
to the list and quite recently Batra and Eissa (1994) the

Sutterby fluid. For flow through an eccentric annulus,
with no rotation of the inner cylinder, Vaughn (1965)
gave an approximate solution for a power-law fluid,
Mitsuishi and Aoyagi (1973) considered the Sutterby
fluid, Guckes (1975) the Bingham fluid, Haciislamoglu
and Langlinais (1990) the Herschel–Bulkley fluid, and
Pham and Mitsoulis (1998) the Papanastasiou fluid.
Although many researchers evaluated numerically the
integrals which resulted from their analyses, it is only in
the last 10 years or so that either finite-difference, finite
volume or finite-element methods have been used to
provide exact numerical solutions to the equations of
motion and such methods now permit consideration of
the complex problem of flow through an eccentric an-
nulus with inner cylinder rotation of any generalised
Newtonian fluid. For this problem, Locket (1992) in-
vestigated both power-law and Bingham fluids, Hussain
and Sharif (1998) and Wan et al. (2000) power law, and
Meuric et al. (1998) both power law and Herschel–
Bulkley. Hussain and Sharif (2000) have recently ex-
tended their Herschel–Bulkley calculations to a partially
blocked eccentric annulus. For problems involving vi-
scoplastic fluids, numerical strategies are required to
avoid the appearance of infinite viscosities for shear
stresses below the yield stress (when the shear rate is
zero). Beverly and Tanner (1992) for example, adopted
the biviscosity model to calculate the flow of a Bingham
fluid through an eccentric annulus with inner cylinder
rotation (unfortunately the numerical results in Beverly
and Tanner’s paper show slip at the surface of the inner
cylinder and unclosed isovels suggesting that an incor-
rect boundary condition was applied). Much of the
previous work is reviewed briefly in the recent book by
Chin (2001) which also discusses applications to drilling
and production, and flow assurance procedures in sub-
sea pipeline design.

In a recent paper (Escudier et al., 2000) we showed
that the flow of a Newtonian fluid through an annulus
exhibits completely unexpected behaviour for high ro-
tation rates of the inner cylinder at very high eccen-
tricities. In particular, the axial velocity distribution
develops a second peak and the friction factor increases
rather than decreases. As outlined above, the principal
application of research into non-Newtonian liquid flow
through annuli is to wellbore drilling operations, where
the location of the drill pipe (i.e. inner cylinder) is un-
controlled (and largely unknown). It is important
therefore to know the consequences of high eccentricity
and this is an aspect we address in the present paper.
The basic computer code implemented here is the same
as that used for the Newtonian case except that the
viscosity is now a specified function of the local shear
rate. We present extensive results for a power-law fluid
and more limited results for three other viscosity models
(Herschel–Bulkley, Carreau and Cross) which we relate
systematically to the power-law model and compare the
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results of both sets of calculations. Escudier et al. (2000)
showed that there was excellent agreement between their
calculations for a Newtonian fluid and experimental
data for annuli with 20%, 50% and 80% eccentricity. In a
separate paper (Escudier et al., 2001) we present exten-
sive comparisons of the results of calculations for shear-
thinning liquids, such as those under discussion here,
with experimental data for the flow of a wide variety of
non-Newtonian liquids through annular geometries with
eccentricities of 0, 50% and 80%. In general, the com-
parisons are extremely good and confirm that visco-
elastic effects, neglected in the calculations, play no
significant role in the flows under consideration. There
are, however, discrepancies in some cases but these ap-
pear to be attributable to the experimental data rather
than the calculations.

The governing equations for the flows under consid-
eration are stated in Section 2, first in dimensional form
and then in a non-dimensional form. An outline of the
numerical procedure is also included together with re-
marks on the solution accuracy. In Section 3 we present
the results of an extensive series of calculations for
power-law fluids and in Section 4 we quantify how these
results are influenced by considering other rheological
models (Herschel–Bulkley, Carreau and Cross). A gen-
eral methodology by which the power-law results can be
applied to flows for fluids obeying other viscosity
models is developed in Appendix A. In Section 5 we
compare our results for a power-law fluid with those of
Meuric et al. (1998).

2. Governing equations and numerical procedure

We consider isothermal, laminar, fully developed
flows of fluids for which the density is constant and the
viscosity dependent only on the second invariant of the
strain-rate tensor (i.e. generalised Newtonian fluids). If
the axial, tangential and radial components of velocity
are u; v and w, respectively, r is the radial distance from
the centre of the inner cylinder, / the angular location
with respect to the inner cylinder (as shown in Fig. 1,
/ ¼ 0 corresponds to the widest part of the annulus),
and z is the axial location, then the governing equations
for such flows can be written as follows:

Continuity
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with boundary conditions

u ¼ v ¼ w ¼ 0 on the outer cylinder; u ¼ w ¼ 0 and
v ¼ xRI on the inner cylinder;

and the magnitude of the rate-of-strain tensor (or shear
rate) _cc is given by

_cc2 ¼ r
o

or
v
r
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r
ow
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: ð5Þ

It is clear from Eqs. (2)–(4) that spatial derivatives of the
viscosity l must be accounted for and that variations
with the angular location / arise as a consequence of
the eccentricity of the annulus e (i.e. the flow is two-
dimensional).

Fig. 1. Annulus geometry and computational grid (40� 256 cells).
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We now introduce the same non-dimensional pa-
rameters as for the flow of a Newtonian fluid (Escudier
et al., 2000) but with a viscosity lF evaluated at a
characteristic shear rate for the flow _ccF defined by

_cc2F ¼ U
DH

� �2

þ xRI

DH

� �2

¼ 1

4

U
d

� �2
"

þ xRI

d

� �2
#
: ð6Þ

This choice for _ccF is consistent with the work of Locket
(1992) whereas Meuric et al. (1998) adopted different
scaling for flows with and without centrebody rotation.
The non-dimensional flow parameters are

Fanning friction factor

f � � d
qU 2

op
oz

¼ 2sS
qU 2

: ð7Þ

Axial Reynolds number

Re � 2qUd
lF

: ð8Þ

Rotational Reynolds number

T � qxRId
lF

: ð9Þ

For consistency with the Newtonian situation, we shall
present the results of our numerical calculations in terms
of the product f 	 Re and a Taylor number Ta where

Ta � qx
lF

� �2

RId
3 ¼ 1

j

�
� 1

�
T 2 ð10Þ

and j is the radius ratio RI=RO. The choice for _ccF
adopted here has the advantage that the corresponding
values of Re; T and Ta reflect to some extent the non-
Newtonian coupling between the axial and tangential
velocity distributions. The definitions of Re and Ta
correspond with generalised Reynolds and Taylor
numbers which can be evaluated for any given fluid, for
example for a power-law fluid with

l ¼ KPL _cc
nPL�1 ð11Þ

we have

x ¼ 0 : Re0 ¼
qU 2�nPLDnPL

H

KPL

; ð12Þ

U ¼ 0 : Ta0 ¼
1

8
q
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H R3�2nPL
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and in the general case of arbitrary rotation and
throughflow

Re ¼ ð1þ n2Þð1�nPLÞ=2Re0; ð14Þ

Ta ¼ 1

n2
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þ 1
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Ta0; ð15Þ

where the velocity ratio

n � xRI

U
¼ 2T

Re
: ð16Þ

It can be seen that n is a direct measure of the non-
dimensional characteristic shear rate for the flow cF,
defined by

cF ¼ _ccFd
U

¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ n2Þ

q
: ð17Þ

In non-dimensional form the governing equations may
now be written as
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The non-dimensional variables are defined as

u � u
U
; v � v

xRI

; w � w
xRI

; r � r
d
;

p � pd
lxRI

; c � _cc
_ccF
; l � l

lF

ð23Þ

and the boundary conditions are

u ¼ w ¼ 0 and v ¼ 1 on the inner cylinder;
u ¼ v ¼ w ¼ 0 on the outer cylinder.

56 M.P. Escudier et al. / Int. J. Heat and Fluid Flow 23 (2002) 52–73



For a Newtonian fluid, l ¼ 1 and the equations become
identical with those of Escudier et al. (2000). We also
note that if n 
 1 or n ! 0, then

f 	 Re ¼ F ðe; j; nPL; TaÞ ð24Þ

so that f 	 Re becomes independent of Re, a result which
is also true generally for a Newtonian fluid (i.e. nPL ¼ 1).

To calculate the velocity components, the governing
equations were transformed into a general, non-or-
thogonal coordinate system. These transformed equa-
tions were then discretised following the finite-volume
approach of Patankar (1980), but adapted for collo-
cated, non-orthogonal grids, as described in Oliveira
(1992). The calculations were carried out using a second-
order central differencing scheme and the deferred cor-
rection approach was used in order to ensure numerical
stability for the convective terms. The solution algo-
rithm was a modified version of the SIMPLEC algo-
rithm of van Doormal and Raithby (1984) adapted for
time marching as explained in Issa and Oliveira (1994)
where details can be found of the particular procedure
used to evaluate mass fluxes at cell faces. When per-
forming calculations with the Herschel–Bulkley model
(i.e. for a fluid with a yield stress) the bi-viscosity model
was used to avoid stiffness in the matrices at low shear
rates and numerical singularities in non-yielded regions
following the criteria suggested by O’Donovan and
Tanner (1984).

The coordinate system was centered at the inner
cylinder axis and the three-dimensional annular ge-
ometry represented by 16 structured blocks around the
annulus. A cross section of the annular geometry and
the grid arrangement for a typical numerical calcula-
tion are shown in Fig. 1. Since the fully developed
flow condition was of concern here, only one row of
cells (�DH in length) was needed in the axial direction
and the procedure of Patankar and Spalding (1972)
was adopted to correct the axial pressure gradient
op=oz. In the other two directions the grid used in the
calculations had 40� 256 cells (grid 3) uniformly dis-
tributed in the radial and tangential directions. This
grid was selected after a systematic grid refinement
study was performed to assess the accuracy of the
calculation using four progressively finer grids: 10� 64
(grid 1), 20� 128 (grid 2), 40� 256 (as shown in Fig.
1) and 80� 512 (grid 4) cells with Newtonian fluids
(Escudier et al., 2000) and here extended to power-law
fluids.

Numerical accuracy was estimated on the basis of
Newtonian and non-Newtonian (power-law) calcula-
tions for concentric and eccentric flow cases and
comparison with the available analytical solutions and,
in its absence, with values determined from using
Richardson’s extrapolation to the limit technique ap-
plied to the results of simulations with the four meshes

mentioned above. This is a standard procedure in
CFD as mentioned by Roache (1997). For more details
of the method, the reader is referred to Ferziger
(1981). In the present case, values of the friction factor
f were calculated for each of the grids and then
Richardson’s extrapolation applied to obtain a final
value of even higher accuracy than that for grid 4
which we take as the correct value. For the flow of a
Newtonian fluid through a concentric annulus the
simulations with grid 3 predicted f 	 Re within 0.1% of
the analytical solution. For power-law fluids having a
power-law index nPL of 0.5 calculations were per-
formed for a concentric and a 95% eccentric annulus
at Re ¼ 100 and Ta ¼ 10000. In this case the grid 3
calculations were found to be within about 0.1% of the
values given by Richardson’s extrapolation. These
comparisons verify the numerical accuracy of the cal-
culations presented in this paper. Validation against
experimental results is discussed in detail by Escudier
et al. (2001).

3. Numerical solutions for a power-law fluid

The numerical solutions for power-law fluids are
presented in Figs. 2–5 and tabulated in Table 1.

Fig. 2 shows the influence of decreasing the power-
law parameter nPL i.e. increasing the degree of shear
thinning. For a Newtonian fluid (i.e. nPL ¼ 1), Escudier
et al. (2000) found that f 	 Re increased with Ta, par-
ticularly at the higher eccentricities, due to the increas-
ing distortion of the axial velocity distribution. Their
results showed a maximum in f 	 Re for high Taylor
numbers at an eccentricity of about 0.4 (also evident in
Fig. 2(c)). Similar tendencies are seen here although the
peak in f 	 Re clearly tends to disappear with increased
levels of shear thinning as does the increase at high ec-
centricities ðe > 0:9Þ. With decreasing nPL the tendency
is for the friction factor to decrease and become in-
creasingly independent of e. As Figs. 2(a)–(c) also show,
the dependence on nPL decreases with increasing rota-
tion speed (i.e. increasing Ta). Streamlines constructed
from the radial/tangential velocity components show
that the underlying reason for the characteristics in
Fig. 2 is the disappearance of flow recirculation in the
outer region of the annulus, due to decreased viscosity
and shear stress in the vicinity of the inner cylinder, and
a flattening of the axial velocity distribution. This effect
is so intense that even at very high rotation rates
ðTa ¼ 50000Þ there is no secondary flow for a fluid with
nPL ¼ 0:2. In general terms the flow of strongly shear-
thinning liquids bears strong similarities to that of less
pseudoplastic fluids ðnPL ! 1Þ at lower Taylor numbers.
For a Newtonian fluid the secondary flow (i.e. in the
cross-flow plane) is decoupled from the axial flow. For
non-Newtonian fluids, however, the axial and secondary
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flows are completely coupled. The velocity ratio
n � xRI=U is a convenient parameter with which to
separate the resulting flows into three types:

(1) n < 1 (axial dominated),
(2) n > 10 (rotation dominated),
(3) 1 < n < 10 (mixed).

As shown in Section 2, n is directly related to the non-
dimensional shear rate cF according to

cF ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ n2Þ

q
ð17Þ

and n can also be shown to be given by

n2 ¼ 4jTa
ð1� jÞRe2 : ð25Þ

Streamlines of the secondary flow and viscosity contours
for three cases representing each of the flow types are
shown in Fig. 3.

For flow type (1) shear thinning is due primarily to
the axial velocity gradients and so occurs predomi-
nantly in the high-shear regions in the vicinity of the
surfaces of the inner and outer cylinders, much like a

lubricating layer. As pointed out by Fang et al. (1999)
(for n ¼ 0), the decreased viscosity in this layer re-
duces f 	 Re compared with the Newtonian case for all
eccentricities.

For flow type (2) (i.e. n > 10) shear thinning is con-
trolled by the velocity gradients in the tangential sec-
ondary flow. The situation is more complicated than for
type (1) and depends on whether recirculation occurs.
For high Ta values and e > 0:5, a recirculation zone
appears within which tangential velocities are very low
compared with those in the layer dragged around by the
inner cylinder ð
x 	 RIÞ. Thus shear thinning occurs
primarily near the inner cylinder whereas the viscosity
remains at very high levels within the recirculation. In
consequence f 	 Re not only increases substantially, but
can even exceed the values for a Newtonian fluid. For
very high values of either e or Ta, the recirculating ve-
locities rise, shear thinning occurs within the recircula-
tion region and f 	 Re falls.

The behaviour for flow type (3) ð1 < n < 10Þ is mixed
with f 	 Re typically increasing with n such that the
f 	 Re versus e curves are effectively shifted upwards.

Fig. 2. Influence of shear-thinning rheology on f 	 Re versus e for j ¼ 0:5; Re ¼ 100 and (a) Ta ¼ 1000, (b) Ta ¼ 10000, (c) Ta ¼ 50000: ðNÞ nPL ¼ 1,

ð�Þ nPL ¼ 0:8, ð�Þ nPL ¼ 0:5, (�) nPL ¼ 0:2.
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Fig. 3. Secondary-flow streamlines w (left) and viscosity l (right) contours for j ¼ 0:5, e ¼ 0:5, nPL ¼ 0:5, Re ¼ 10, (a) Ta ¼ 10, n ¼ 0:63,
(b) Ta ¼ 103, n ¼ 6:3 and (c) Ta ¼ 5� 104, n ¼ 44:7.
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Figs. 4 and 5 are for fixed values of nPL (0.5) and j
(also 0.5) and show the separate effects of Re and Ta,
respectively. It will be recalled that for a Newtonian
fluid f 	 Re is independent of Re because the radial/tan-
gential velocities are de-coupled from the axial veloci-
ties. This is not the case for a shear-thinning fluid, except
under limiting conditions (n ! 0 and n 
 1), and the
influence of Re is clearly both significant and complex.
Calculations for e ¼ 0:5 show that a recirculation zone
develops in the outer region of the widest part of the
annulus, increasing in extent and strength with increas-
ing Ta but decreasing with Re. The peak axial velocity
moves towards the narrowing gap and decreases in
magnitude with increasing Ta, as seen for Newtonian
fluids, but now there is also an influence of Reynolds
number. The peak axial velocity always decreases with
increasing Re but its location depends on both Ta and
Re. At low values of Ta the peak moves towards the
narrowing gap as Re increases but at high Ta the angular
location of the peak velocity gradually moves back into
the wide gap and radially towards the outer wall of the
annulus. Although the effects of Ta and Re on the cross-

plane secondary flow appear to be fairly simple in terms
of its magnitude, this is not so with regard to the loca-
tion of the separated flow region. At low Re the sec-
ondary-flow region is nearly symmetric but at high Re
the zone of separation moves in the opposite direction to
that of the inner cylinder i.e. towards the widening gap
in contrast to the Taylor number effect for Newtonian
fluids. The viscosity contours show that at low Re there
is a single region of high viscosity within which the peak
value decreases with Ta when Ta is small but then in-
creases with Ta after the onset of secondary flow. For
intermediate values of Ta and Re there are two viscosity
peaks at opposite sides of the annulus whereas at very
high Ta and Re values the viscosity field is strongly
distorted but with only a single peak. As can be seen
from the governing equations in non-dimensional form,
the non-dimensional shear rate c, and hence the viscosity
l, now depends on the velocity ratio n. In consequence
f 	 Re can be seen to be independent of Re for the case of
zero rotation and this explains the tendency in Fig. 5 for
the f 	 Re curves to asymptote towards the curve for
Ta ¼ 0 as Re increases. It is also the case that f 	 Re is

Fig. 4. Influence of Reynolds number on f 	 Re versus e for j ¼ 0:5, nPL ¼ 0:5 and (a) Ta ¼ 1000, (b) Ta ¼ 10000, (c) Ta ¼ 50000: ð�Þ Re ¼ 10,

ð�Þ Re ¼ 100, (�) Re ¼ 1000. Reference curves for nPL ¼ 1 ðMÞ and Ta ¼ 0 ðþÞ.
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independent of Re for n ! 1 i.e. the case of very high
rotation speeds or very low Re, as is evident from the
equations of Section 2. At high eccentricities and high
Ta, f 	 Re actually exceeds that for Newtonian fluids
because of the changes in the flowfield created by the
effect of rotation on the viscosity field.

Finally, Fig. 6 shows the influence of the radius ratio
j. Shear thinning reduces f 	 Re for low and high radius
ratios as it did for the intermediate value j ¼ 0:5 which
was used in the previous figures. Perhaps surprisingly, at
least for the case of Ta ¼ 104 and Re ¼ 102, the f 	 Re
variation with j becomes monotonic for all values of
eccentricity in contrast with the more complex variation
for Newtonian fluids.

4. Sensitivity to rheology

The sensitivity of calculated f 	 Re values to the vi-
scometric model adopted has been assessed by com-
paring values resulting from the power-law model with

results for the Carreau, Cross, and Herschel–Bulkley
models, including simplified versions of Carreau and
Cross with zero values of the infinite shear-rate viscosity
l1. This sensitivity analysis shows the extent to which
the adoption of the simple power-law viscosity model is
an adequate representation of fluids which are better
fitted by more sophisticated viscosity models incorpo-
rating additional free parameters. The procedure for
matching the parameters of the power-law fluid to those
of the other viscosity models is outlined in Appendix A.
The non-dimensional geometrical parameters adopted
for the comparisons are j ¼ 0:5, e ¼ 0 and e ¼ 0:7. The
numerical calculations are carried out using dimensional
variables for which the reference values are RI ¼
25:4 mm, U ¼ 0:12451 m=s, x ¼ 0:98039 rad=s, and
q ¼ 103 kg=m3. These values correspond to a charac-
teristic shear rate for the flow _ccF ¼ 2:5 s�1. For a power-
law fluid with KPL ¼ 0:1 Pa 	 snPL and nPL ¼ 0:5, both Re
and Ta assume the value 100 whereas for other rheology
models not only does the friction factor change but also
the Reynolds and Taylor numbers. The results of the

Fig. 5. Influence of Taylor number on f 	 Re versus Re for j ¼ 0:5, nPL ¼ 0:5 and (a) Re ¼ 1000, (b) Re ¼ 100, (c) Re ¼ 10: ð�Þ Ta ¼ 0, ð�Þ Ta ¼ 10,

ðMÞ Ta ¼ 100, ð}Þ Ta ¼ 10000, ðdÞ Ta ¼ 5000, ðjÞ Ta ¼ 10000, ðNÞ Ta ¼ 50000.
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Table 1

Results of power-law calculations: dependence of f 	 Re on nPL; j; e; Ta and Re

e Ta

0 10 102 103 104 5� 104

(a) nPL ¼ 0:8; j ¼ 0:5; Re ¼ 102

0.0 15.438 15.443 15.489 15.874 17.451 18.890

0.10 15.236 15.245 15.325 15.813 17.471 18.995

0.20 14.663 14.683 14.842 15.606 17.507 19.273

0.30 13.811 13.840 14.072 15.176 17.462 19.572

0.40 12.794 12.825 13.078 14.413 17.131 19.515

0.50 11.719 11.745 11.958 13.239 16.198 18.600

0.60 10.659 10.675 10.815 11.760 14.513 16.852

0.70 9.6656 9.6735 9.7461 10.308 12.577 15.001

0.80 8.7619 8.7664 8.8100 9.1881 11.055 13.553

0.85 8.3463 8.3517 8.4022 8.8102 10.625 13.055

0.90 7.9549 7.9633 8.0376 8.5662 10.523 12.808

0.95 7.5872 7.6008 7.7169 8.4532 10.782 12.977

0.98 7.3776 7.3955 7.5453 8.4440 11.065 13.322

0 10 102 103 5� 103 104 5� 104

(b) nPL ¼ 0:5; j ¼ 0:5; Re ¼ 102

0.0 7.9468 7.9531 8.0094 8.4973 9.8219 10.751 13.437

0.10 7.8572 7.8726 7.9662 8.4905 9.8279 10.766 13.498

0.20 7.5955 7.6336 7.8291 8.4646 9.8406 10.802 13.663

0.30 7.2048 7.2624 7.5757 8.3994 9.8414 10.834 13.870

0.40 6.7428 6.8040 7.1792 8.2445 9.7836 10.798 13.965

0.50 6.2605 6.3101 6.6457 7.8793 9.5496 10.549 13.696

0.60 5.7895 5.8211 6.0510 7.1207 8.8597 9.8113 12.850

0.70 5.3510 5.3670 5.4960 6.2032 7.7354 8.6860 11.686

0.80 4.9518 4.9595 5.0276 5.5095 6.7902 7.7067 10.641

0.85 4.7675 4.7742 4.8342 5.2743 6.4521 7.3312 10.220

0.90 4.5932 4.6014 4.6722 5.1341 6.2533 7.0800 9.8687

0.95 4.4286 4.4416 4.5448 5.1127 6.3022 7.1148 9.6785

0.98 4.3342 4.3520 4.4864 5.1673 6.5099 7.3828 9.6959

0 10 102 103 104 5� 104

(c) nPL ¼ 0:2; j ¼ 0:5; Re ¼ 102

0.0 3.8874 3.8921 3.9338 4.2988 6.2320 9.5576

0.10 3.8699 3.8792 3.9288 4.2991 6.2323 9.5689

0.20 3.7776 3.8216 3.9110 4.2977 6.2461 9.6019

0.30 3.6160 3.7095 3.8750 4.2926 6.2597 9.6520

0.40 3.4223 3.5366 3.8071 4.2801 6.2721 9.7043

0.50 3.2261 3.3205 3.6699 4.2511 6.2731 9.7170

0.60 3.0403 3.1013 3.3738 4.1749 6.2242 9.5879

0.70 2.8740 2.9049 3.0553 3.8560 5.9405 9.1365

0.80 2.7160 2.7336 2.8198 3.2385 5.2300 8.4145

0.85 2.6446 2.6571 2.7252 3.0914 4.9526 8.0801

0.90 2.5768 2.5865 2.6475 2.9833 4.7420 7.8048

0.95 2.5123 2.5230 2.5933 2.9324 4.6019 7.5755

0.98 2.4752 2.5064 2.5775 2.9649 4.6353 7.4563

0 10 102 103 104 5� 104

(d) nPL ¼ 0:5; j ¼ 0:8; Re ¼ 102

0.0 7.9994 8.0264 8.2550 9.7343 13.247 15.294

0.10 7.8860 7.9248 8.1993 9.7166 13.273 15.469

0.20 7.5704 7.6333 8.0190 9.6523 13.327 15.926

0.30 7.1154 7.1938 7.6815 9.5021 13.332 16.427

0.40 6.5915 6.6668 7.1711 9.1790 13.152 16.615

0.50 6.0548 6.1131 6.5439 8.5441 12.591 16.163

0.60 5.5399 5.5781 5.8491 7.5656 11.495 14.993

0.70 5.0646 5.0865 5.2917 6.5262 10.042 13.439

0.80 4.6345 4.6486 4.7924 5.7392 8.6649 11.871

0.85 4.4366 4.4512 4.5938 5.4900 8.1261 11.122

0.90 4.2497 4.2682 4.4295 5.3436 7.7828 10.417

0.95 4.0733 4.0994 4.2968 5.2904 7.7240 10.049

0.98 3.9723 4.0048 4.2309 5.2966 7.8444 10.326
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comparisons are given in Table 2 presented in terms of
the percentage difference D between the values of fPL
and fNN, defined as

D ¼ 100 1

�
� fPL
fNN

�
ð26Þ

the subscript ‘‘PL’’ indicating the power-law result and
‘‘NN’’ the result for the particular model being assessed.
The friction factor fNN in each case is obtained from the
definition �dðop=ozÞ=ðqU 2Þ, the axial pressure gradient
op=oz being one of the key results of the numerical
calculations.

So far as Table 2 is concerned, we can draw a number
of conclusions. For the simplified Cross and Carreau
models (i.e. l1 ¼ 0), the difference D increases as the
characteristic shear rate for the fluid ð _ccSCR;1 or _ccSCA;1Þ
increases and approaches that for the flow ð _ccFÞ. The
difference is higher for the simplified Cross model than
for the simplified Carreau model because the change
from power-law behaviour to the low-shear-rate New-
tonian plateau is less gradual for the latter. In general,
for a difference of less than 5%, we conclude that
_ccSCR= _ccF must be less than 0.01 whereas the corre-
sponding value of _ccSCA;1= _ccF is 0.4.

Table 1 (continued)

e Ta

0 10 102 103 104 5� 104

(e) nPL ¼ 0:5; j ¼ 0:2; Re ¼ 102

0.0 7.7196 7.7212 7.7345 7.8633 8.8298 10.931

0.10 7.6770 7.6791 7.6958 7.8396 8.8249 10.937

0.20 7.5346 7.5386 7.5693 7.7655 8.8087 10.952

0.30 7.2975 7.3040 7.3573 7.6363 8.7751 10.964

0.40 6.9879 6.9977 7.0724 7.4386 8.7062 10.948

0.50 6.6397 6.6505 6.7328 7.1487 8.5556 10.835

0.60 6.2816 6.2909 6.3626 6.7487 8.2091 10.468

0.70 5.9349 5.9410 5.9883 6.2652 7.5587 9.7483

0.80 5.6169 5.6653 5.6427 5.7400 6.9058 9.0967

0.85 5.4707 5.5023 5.4945 5.5569 6.6612 8.7504

0.90 5.3330 5.3662 5.3684 5.4378 6.4429 8.5006

0.95 5.2064 5.2349 5.2500 5.3349 6.3290 8.4326

0.98 5.1344 5.1675 5.1988 5.2820 6.3098 8.4130

0 10 102 103 5� 103 104 5� 104

(f) nPL ¼ 0:5; j ¼ 0:5; Re ¼ 10

0.0 7.9468 8.4973 10.751 14.660 17.078 17.850 18.553

0.10 7.8572 8.4065 10.662 14.621 17.156 18.005 18.891

0.20 7.5955 8.1404 10.394 14.491 17.361 18.444 19.950

0.30 7.2048 7.7320 9.9544 14.236 17.601 19.055 21.758

0.40 6.7428 7.2358 9.3750 13.807 17.720 19.592 23.849

0.50 6.2605 6.7094 8.7124 13.163 17.528 19.733 25.164

0.60 5.7895 6.1925 8.0238 12.296 16.869 19.221 24.937

0.70 5.3510 5.7115 7.3608 11.266 15.699 17.980 23.220

0.80 4.9518 5.2727 6.7567 10.175 14.060 16.024 20.475

0.85 4.7675 5.0759 6.4837 9.6384 13.097 14.880 18.982

0.90 4.5932 4.8880 6.2309 9.1234 12.089 13.635 17.513

0.95 4.4286 4.7113 5.9983 8.6640 11.162 12.441 16.000

0.98 4.3342 4.6105 5.8706 8.4348 10.770 11.939 14.591

0 10 102 103 5� 103 104 5� 104

(g) nPL ¼ 0:5; j ¼ 0:5; Re ¼ 103

0.0 7.9468 7.9469 7.8573 7.9531 7.9784 8.0094 8.2417

0.10 7.8572 7.8664 7.9051 7.9490 7.9857 8.0209 8.2717

0.20 7.5955 7.6278 7.7712 7.9334 8.0062 8.0536 8.3670

0.30 7.2048 7.2571 7.5237 7.8909 8.0346 8.1026 8.5214

0.40 6.7428 6.7994 7.1345 7.7820 8.0573 8.1568 8.6649

0.50 6.2605 6.3061 6.6061 7.4993 8.0355 8.1877 8.7291

0.60 5.7895 5.8175 6.0082 6.7911 7.8048 8.0712 8.2287

0.70 5.3510 5.3635 5.4513 5.8328 6.6172 7.1070 7.4490

0.80 4.9518 4.9570 4.9956 5.2166 5.6626 5.9587 6.7673

0.85 4.7675 4.7721 4.8088 5.0290 5.4402 5.7107 6.5268

0.90 4.5932 4.5998 4.6505 4.9163 5.3327 5.5750 6.3421

0.95 4.4286 4.4400 4.5246 4.9018 5.2042 5.6456 6.1734

0.98 4.3342 4.3504 4.4671 4.9550 5.5823 5.8638 6.2557
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Table 2

Sensitivity of calculations to viscosity model

e l0 (Pa s) l1 (Pa s) kCR (s) mCR nPL KPL ðPa snPL Þ _ccCR;I ðs�1Þ _ccCR;1 ðs�1Þ _ccCR;2 ðs�1Þ 102fCR 102fPL D (%) Re

(a) Cross model

0 10 10�3 104 0.5 0.50990 0.10000 1.0 8:302� 10�5 12045 8.3908 8.1897 2.4 99.1

10�2 0.53070 0.10731 0.1 6:369� 10�5 157 11.884 8.5805 28 86.9

0.7 10 10�3 104 0.5 0.50990 0.10000 1.0 8:302� 10�5 12045 5.7149 5.5994 2.0 99.1

10�2 0.53070 0.10731 0.1 6:369� 10�5 157 7.7722 5.8124 25 86.9

e l0 (Pa s) l1 (Pa s) kSCR (s) mSCR nPL KPL ðPa snPL Þ _ccSCR;1 ðs�1Þ 102fSCR 102fPL D (%) Re

(b) Simplified Cross model

0 10 0 104 0.5 0.5 0.1 10�4 7.9925 8.0094 )0.21 101

1 102 10�2 7.8426 )2.1 106

0.1 1 1 6.6077 )21 163

0.7 10 0 104 0.5 0.5 0.1 10�4 5.4830 5.4960 )0.24 101

1 102 10�2 5.3687 )2.4 106

0.1 1 1 4.4545 )2.3 163

e l0 (Pa s) l1 (Pa s) mCA nPL KPL (Pa snPL ) _ccCA;I ðs�1Þ _ccCA;1 ðs�1Þ _ccCA;2 ðs�1Þ 102fCA 102fPL D (%) Re

(c) Carreau model

0 1 10�4 0.5 0.50050 0.10009 0.6933 9:97� 10�3 1:016� 106 8.0488 8.0185 0.38 99.9

10�3 0.50330 0.10080 0.2764 9:86� 10�3 1:080� 104 8.4008 8.0691 3.9 98.5

10�2 0.52020 0.10677 0.1108 9:44� 10�3 1:392� 102 11.829 8.3812 29 87.1

0.7 1 10�4 0.5 0.50050 0.10009 0.6933 9:97� 10�3 1:016� 106 5.5188 5.5010 0.32 99.9

10�3 0.50330 0.10080 0.2764 9:86� 10�3 1:080� 104 5.7233 5.5289 3.4 98.5

10�2 0.52020 0.10677 0.1108 9:44� 10�3 1:392� 102 7.7373 5.6988 26 87.1
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e l0 (Pa s) l1 (Pa s) kSCA (s) nPL KPL ðPa snPL Þ _ccSCA ðs�1Þ 102f 102fPL D (%) Re

(d) Simplified Carreau model

0 1.0 0 100 0.5 0.1 10�2 8.0095 8.0094 0 100

0.316 10 10�1 8.0095 0 100

0.1 1 1 8.0003 )0.11 104

0.032 0.1 10 7.5579 )6.0 203

0.7 1.0 0 100 0.5 0.1 10�2 5.4960 5.4960 0 100

0.316 10 10�1 5.4960 0 100

0.1 1 1 5.4868 )0.17 104

0.032 0.1 10 5.0396 )9.1 203

e sY (Pa) nHB KHB ðPa snHB Þ nPL KPL ðPa snPL Þ _ccHB ðs�1Þ 102fHB 102fPL D (%) Re

(e) Herschel–Bulkley model

0 10�3 0.5 0.1 0.5 0.1 10�4 7.9423 8.0094 )0.85 99.4

10�2 10�2 8.0958 1.1 94.1

0.05 0.25 8.7736 8.7 76.0

0.1 1 9.6109 17. 61.3

0.7 10�3 0.5 0.1 0.5 0.1 10�4 5.4445 5.4960 )0.95 99.4

10�2 10�2 5.5622 1.2 94.1

0.05 0.25 6.0824 9.6 76.0

0.1 1 6.7273 18 61.3
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For the full Cross and Carreau models, the trend is
less straightforward but depends primarily on the sec-
ond characteristic shear rate ð _ccCR;2 or _ccCA;2Þ resulting
from the power-law intersection with l1. For the Cross
model the difference is large if _ccF= _ccCR;2 > 0:016 and
falls to well below 2% if _ccF= _ccCR;2 < 2� 10�4. For the
Carreau model the difference is again large if
_ccF= _ccCA;2 > 0:016 but less than 3% if the ratio is below
2:3� 10�4 and less than 1% if it is less than 2:5� 10�6.
For the Herschel–Bulkley model the situation is similar
to that for the simplified Cross and Carreau models
except that, because the deviation from the power law
is very slow at low shear rates, the difference becomes
large if the characteristic shear rate for the fluid, _ccHB, is
low. For _ccHB= _ccF < 4� 10�3 the difference is less than
5%.

Although these conclusions are based upon calcula-
tions for a value of _ccF ¼ 2:5 s�1, it is anticipated that
similar conclusions would hold for flows characterised
by different values of _ccF.

5. Comparison with results of Meuric et al. (1998) for a

power-law fluid

Meuric et al. (1998) present results of numerical
simulations for the flow of power-law fluids through
eccentric annuli with inner-cylinder rotation. In agree-
ment with the findings of Escudier et al. (2000), for a
Newtonian fluid ðnPL ¼ 1Þ they find increasing flow rate
with eccentricity while increased levels of rotation re-
duce throughflow. For a shear-thinning fluid ðnPL ¼ 0:7Þ
the simulations of Meuric et al. (represented in their
Figure 12 by the symbol M) show that for e ¼ 0:3 and 0.7
the flow rate initially decreases with rotation speed, then

tends to level and finally increases. For e ¼ 0:5, on the
other hand, the flowrate again levels out after the initial
decrease but decreases again at the highest rotation
speed. We believe this behaviour may be attributable to
a lack of accuracy associated with the coarseness of their
mesh. Their results also suggest that higher levels of
eccentricity result in a steeper decrease of flow rate with
rotation rate and a shift of the condition of minimum
flow rate to higher rotation speeds. Meuric et al. fit
straight lines through their calculated results indicating
a decrease in flowrate with rotation speed which they
also state to be the case in the text. This interpretation
suggests that they doubted the accuracy of their nu-
merical calculations to the point of not accepting some
of the qualitative trends.

Unfortunately lack of information about the geome-
try and imposed pressure gradient in the paper of
Meuric et al. did not allow us to attempt to reproduce
their simulations. We have nevertheless attempted to
determine whether the trends of their predictions are
consistent with ours. Also, an important difference is
that while Meuric et al. calculated the axial flow rate for
a given pressure gradient, in our code the flow rate is an
input parameter and the pressure gradient a result, and
the trends observed in our figures must therefore be
inverted in order to correspond to the variables used by
Meuric et al.

In Fig. 7 the computed pressure gradient for a fluid
with nPL ¼ 0:5, KPL ¼ 0:1 Pa 	 snPL is plotted against the
rotation speed x for several different eccentricities in
the range 0–0.75 at two different values of the axial
bulk velocity (0.1 and 0.2 m/s) and for a fluid with
nPL ¼ 0:8, KPL ¼ 0:1 Pa 	 snPL ; U ¼ 0:1185 m=s and ec-
centricities up to 0.7. For a concentric annulus the
pressure gradient always decreases with rotation rate

Fig. 6. Influence of radius-ratio j on f 	 Re versus e for nPL ¼ 0:5, Re ¼ 100, Ta ¼ 10000: ðdÞ j ¼ 0:2, ðjÞ j ¼ 0:5, ðNÞ j ¼ 0:8. Reference curves for

nPL ¼ 1: ð�Þ j ¼ 0:2, ð�Þ j ¼ 0:5, ðMÞ j ¼ 0:8.
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and it is duct eccentricity that promotes the maximum
pressure drop (or minimum flow rate in Meuric et al.).
We note also that the rotation rate at which there is a
maximum pressure gradient increases with eccentricity
as well as with bulk velocity. For instance, with
U ¼ 0:2 m=s the pressure gradient maximum is hardly
detectable for e ¼ 0:7 and entirely absent for e ¼ 0:75.
That this phenomenon is enhanced by shear thinning
can also be confirmed from the curves for a bulk ve-
locity U ¼ 0:1185 m=s. For e ¼ 0:7 the pressure gra-
dient now exhibits no maximum, whereas in both
previous cases there were maxima for this eccentricity.
The highest rotation rates for the curves in Fig. 7
correspond to Taylor numbers well in excess of 50 000,
a value that is unlikely to be attained in practice
without the onset of instabilities.

The overall conclusion is that, for shear-thinning
fluids in eccentric annuli, the flow rate decreases to a
minimum as the rotation rate increases at a constant
pressure gradient as shown by the detailed results of
Meuric et al. The trend is accentuated for intermediate
eccentricities but diminishes with increasing Reynolds
number.

6. Conclusions

Friction factors and other kinematic characteristics
have been obtained for the flow of power-law fluids
through eccentric annuli with inner-cylinder rotation by
carrying out a large number of computations (over 400
computer runs) covering a wide range of the relevant
parameters: tabulated results are provided for nPL ¼ 0:2,
0.5, 0.8; j ¼ 0:2, 0.5, 0.8; e ¼ 0–0:98; Re ¼ 10, 102, 103;
Ta ¼ 0, 10, 102, 103, 104, 5� 104. The graphical results
cover a selected range of these parameters to illustrate
the major trends. This study has extended considerably
existing knowledge of this type of flow represented by
the works of Fang et al. (1999) (no rotation), Meuric et
al. (1998), (restricted range of parameters given in terms
of dimensional variables) and Wan et al. (2000) (re-
stricted range of parameters). The work has also re-
vealed that some of the conclusions of Meuric et al. are
misleading and that some of the results of Beverly and
Tanner (1992) are in error.

In general, the f 	 Re values for power-law fluids follow
the trends observed by Escudier et al. (2000) for Newto-
nian fluids, including an increase with Ta, an increase with

Fig. 7. Axial pressure gradient versus inner-cylinder rotation speed for RI ¼ 25:4 mm, j ¼ 0:5, K ¼ 0:1 Pa snPL : (a) U ¼ 0:1 m=s, nPL ¼ 0:5,
ðdÞ e ¼ 0, ðNÞ e ¼ 0:2, ðjÞ e ¼ 0:4, ðrÞ e ¼ 0:6, ð.Þ e ¼ 0:7, ð�Þ e ¼ 0:75, (b) U ¼ 0:2 m=s; nPL ¼ 0:5, ð�Þ e ¼ 0, ð�Þ e ¼ 0:05, ðMÞ e ¼ 0:2,

ð�Þ e ¼ 0:4, ð}Þ e ¼ 0:6, ðrÞ e ¼ 0:7, ð Þ e ¼ 0:75, (c) U ¼ 0:12 m=s, nPL ¼ 0:8, ðdÞ e ¼ 0, ðNÞ e ¼ 0:2, ðjÞ e ¼ 0:4, ðrÞ e ¼ 0:6, ð.Þ e ¼ 0:7.
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eccentricity at low and very high e but a decrease for in-
termediate e. These effects result from the distortion of the
axial velocity field created by the combined effects of ec-
centricity and inner-cylinder rotation.However, due to its
shear thinning characteristics, a power-law fluid generally
exhibits lower friction factors compared with the New-
tonian fluid, or the power law at higher nPL, a feature also
documented in other studies (Meuric et al., 1998; Wan et
al., 2000). Our study is sufficiently extensive to suggest a
practical classification of the annular flow of shear-thin-
ning fluids in terms of the velocity ratio n � xRI=U which
is directly related to the non-dimensional shear rate

cF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ n2Þ

q
=2. For n < 1 the flow is dominated by the

axial throughflow and shear thinning creates a low vis-
cosity layer around the inner cylinderwhich reduces f 	 Re
at all eccentricities and the f 	 Re versus e curve tends to
that for Ta ¼ 0. At the other extreme ðn > 10Þ the flow is
rotation dominated and f 	 Re becomes dependent in a
complex way on whether there is a recirculation region in
the cross-flow plane. For high values of Ta and e, the effect
of the inner-cylinder low-viscosity layer is counteracted
by the appearance of a high viscosity region within the
low-velocity ð� x 	 RIÞ recirculation in the vicinity of the
outer wall of the annulus as a consequence of which the
shear stress on the outer cylinder wall is very high and
hence f 	 Re increases. This effect is so strong that at low
Reynolds numbers, f 	 Re may even exceed the value for
the corresponding Newtonian flow, a very surprising
characteristic not previously reported. Also, at very high
rotation rates ðTa ¼ 5� 104Þ and intense shear thinning
ðnPL ¼ 0:2Þ, flow recirculation disappears completely in
contrast to the situation for higher nPL values including
unity (i.e. the Newtonian case). In the intermediate range
ð1 < n < 10Þ, the flow has a mixed behaviour and f 	 Re
increases with n.

We propose and demonstrate that the results for
power-law fluids can be applied to fluids characterised by
other rheological models by an appropriate choice of the
power-law index nPL and the consistency index KPL de-
pending upon the ratios of the characteristic shear rate
for the flow to the characteristic shear rates for the fluid.
In Appendix A of the present paper we develop a sys-
tematic matching procedure to determine nPL and KPL

which we apply to the Cross, Carreau and Herschel–
Bulkley models. Confidence in the accuracy of any of the
approximate approaches to the annular flow problem,
which are more likely to be used in practice, can be
achieved through comparison with our numerical solu-
tions. It cannot be taken for granted that an inelastic
viscosity model will be adequate in all circumstances
except perhaps for the calculation of axisymmetric flows
which are regarded as what Astarita and Marucci (1974)
term viscometric. As Alves et al. (in press) have shown in
a recent paper, for an axisymmetric flow the crucial issue
is whether the viscosity function adopted for the inelastic

model captures the exact shear viscosity behaviour of a
viscoelastic fluid which is influenced by the elastic normal
stresses. Also, it should not be forgotten that no account
has been taken in the calculations for viscoelastic effects
due to the elongational viscosity. The normal stress
would be expected to affect any flow in an eccentric an-
nulus (see e.g. Davies and Li, 1994) whereas the elon-
gational viscosity only plays a role for the eccentric
annulus with inner cylinder rotation. Extensive com-
parisons (Escudier et al., 2001) between the results of
calculations and experimental data suggest that for the
flows under consideration accurate results are obtained
in spite of the neglect of viscoelastic effects.

Appended to the paper is an extensive bibliography
of 100 (Appendix B) papers not specifically referred to in
the text concerning theoretical and numerical investi-
gations of laminar flow of non-Newtonian fluids
through annular channels.
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Appendix A. Matching the power-law model to the Cross,
Carreau and Herschel–Bulkley models and determination

of characteristic shear rates

For the calculations reported in Section 4, to deter-
mine sensitivity to the viscosity model, it was necessary
to select values for the parameters KPL and nPL so that
the power-law model lPL ¼ KPL _ccnPL�1 was appropriately
matched to more sophisticated viscosity models. As we
discuss below, the choice of a consistent matching pro-
cedure was influenced by the characteristics of the Cross
model.

A.1. Cross model

The Cross model is almost invariably plotted in log–
log coordinates and so appears to exhibit a lower
Newtonian plateau for _cc ! 0, an upper Newtonian
plateau for _cc ! 1, and a sigmoidal curve with an in-
flexion point at intermediate shear rates. In fact, as is
clear from the original paper by Cross (1965), the Cross-
model equation

lCR ¼ l1 þ l0 � l1
1þ ðkCR _ccÞmCR

ðA:1Þ
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produces a curve with no inflexion point and no true
asymptotic behaviour: dlCR=d _cc approaches infinity as _cc
approaches zero and lCR approaches the value l0. It is
the logarithmic ‘‘stretching’’ at low shear rates which
gives the impression of a first Newtonian plateau since
dðln lÞ=dðln _ccÞ tends to zero as _cc tends to zero. Thus the
Cross model exhibits neither power-law behaviour at
high shear rates nor an inflexion point in linear coor-
dinates (i.e. lCR versus _cc). For the present work, there-
fore, to approximate the Cross model the power-law
parameters were determined by matching the slope and
viscosity at the inflexion point _ccCR;I in log–log coordi-
nates. The result is

_ccCR;I ¼
1

kCR

l0

l1

� �1=2mCR

ðA:2Þ

from which

nPL ¼ 1� mCR

l0 � l1ð Þ l0=l1ð Þ1=2

lI 1þ l0=l1ð Þ1=2
h i2 ðA:3Þ

and

KPL ¼ lI

_ccnPL�1
CR;I

; ðA:4Þ

where

lI ¼ l1 þ l0 � l1ð Þ
1þ l0=l1ð Þ1=2

ðA:5Þ

is the viscosity at the inflexion point, lIð _ccCR;IÞ.
The first characteristic shear rate _ccCR;1 is determined

by the intersection point between l ¼ l0 and the power-
law line which, for this model, is given by

KPL _cc
nPL�1
CR;1 ¼ l0 or _ccCR;1 ¼ _ccCR;I

l0

lI

� �1=ðnPL�1Þ

: ðA:6Þ

The second characteristic shear rate _ccCR;2 is determined
from the intersection with l1 so that

KPL _cc
nPL�1
CR;2 ¼ l1

or

_ccCR;2 ¼ _ccCR;I

l1
lI

� �1=ðnPL�1Þ

: ðA:7Þ

This method of fitting a power-law equation to the
Cross model is illustrated in Fig. 8, for two different sets
of parameters.

A simplified version of the Cross model results from
setting l1 ¼ 0 so that

lSCR ¼ l0

1þ kSCR _cc
� �mSCR

: ðA:8Þ

This model then predicts power-law behaviour at high
shear rates and a Newtonian region at low shear rates.
The power-law parameters are given by

nPL ¼ 1� mSCR and KPL ¼ l0k
�mSCR

SCR ðA:9Þ
and the characteristic shear rate _ccSCR by

l0 ¼ KPL _cc
nPL�1
SCR or _ccSCR ¼ 1=kSCR: ðA:10Þ

There is, of course, no second characteristic shear rate
when l1 ¼ 0.

A.2. Carreau model

In contrast to the Cross model, the Carreau model
does exhibit a Newtonian plateau at low shear rates and

Fig. 8. Illustration of the method for matching the power-law model (straight lines) to the Cross model with kCR ¼ 104 s, l0 ¼ 10 Pa s and

(a) l1 ¼ 10�3 Pa s, KPL ¼ 0:1 Pa snPL , nPL ¼ 0:5099 (–––), (b) l1 ¼ 10�2 Pa s, KPL ¼ 0:1073 Pa snPL , nPL ¼ 0:5307 (–––).

M.P. Escudier et al. / Int. J. Heat and Fluid Flow 23 (2002) 52–73 69



an inflexion point in linear–linear coordinates. However,
for consistency with the Cross-model matching proce-
dure, it was decided to select the power-law parameters
to match the Carreau model at the inflexion point _ccCA;I

in log–log coordinates

lCA ¼ l1 þ l0 � l1

½1þ ðkCA _ccÞ2�mCA
: ðA:11Þ

Unfortunately the determination of _ccCA;I now requires
numerical solution of the transcendental equation

1
h

� mCAðkCA _ccCA;IÞ
2
i
1
h

þ ðkCA _ccCA;IÞ
2
imCA

þ l0

l1
� 1 ¼ 0: ðA:12Þ

It can be shown that

nPL ¼ 1� 2mCA

ðl0 � l1ÞðkCA _ccCA;IÞ
2

lI½1þ ðkCA _ccCA;IÞ
2�1þmCA

ðA:13Þ

and

KPL ¼ lI

_ccnPL�1
CA;I

; ðA:14Þ

where

lI ¼ l1 þ l0 � l1

½1þ ðkCA _ccCA;IÞ
2�mCA

ðA:15Þ

and the first characteristic shear rate _ccCA;1 for the Car-
reau model is given by

l0 ¼ KPL _cc
nPL�1
CA;1 : ðA:16Þ

The second characteristic shear rate is given by

l1 ¼ KPL _cc
nPL�1
CA;2 : ðA:17Þ

As with the Cross model, a simplified version of the
Carreau model results from setting l1 ¼ 0 i.e.

lSCA ¼ l0½1þ ðkSCA _ccÞ2�ðnSCA�1Þ=2; ðA:18Þ
and this also has a power-law asymptote at high shear
rates. The power-law parameters are again selected to
ensure a match with this asymptote i.e.

KPL ¼ l0k
nSCA�1
SCA and nPL ¼ nSCA: ðA:19Þ

A characteristic shear rate for this fluid _ccSCA is then gi-
ven by

l0 ¼ KPL _cc
nPL�1
SCA or _ccSCA ¼ 1=kSCA: ðA:20Þ

A.3. Herschel–Bulkley model

Much the same reasoning as for the simplified Cross
and Carreau models applies to the Herschel–Bulkley
model which has no inflection point and also asymptotes
to power-law behaviour at high shear rates. We have
now

sHB ¼ sY þ KHB _cc
nHB ðA:21Þ

or

lHB ¼ sY
_cc
þ KHB _cc

nHB�1 ðA:22Þ

so that

KPL ¼ KHB and nPL ¼ nHB: ðA:23Þ

Since the viscosity for the Herschel–Bulkley model be-
comes infinite at zero shear rate, in this case a charac-
teristic shear rate for the fluid is defined by matching the
shear stress at zero shear rate i.e. sY; to that given by the
power law i.e.

_ccHB ¼ sY
KHB

� �1=nHB

: ðA:24Þ

Here again, there is no second characteristic shear rate
because lHB tends to zero as _cc tends to infinity.
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